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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 1336 

THE ONE-DIMENSIONAL THEORY OF STEADY COMPRESSIBLE FLUID FLOW 

IN DUCTS WITH FRICTION AND HEAT ADDITION 

By Bruce L. Hicks, Donald J. Montgomery, 
and Robert H. Wasserman 

SUMMARY 

Steady, diabatic (nonadiabatic), frictional, variable-area flow 
of a compressible fluid is treated in differential form on the basis 
of the one-dimensional approximation; The basic equations are first 
stated in terms of pressure, temperature, density, and Telocity of 
the fluid. Considerable simplification and unification of the equa- 
tions is then acbieTed by choosing the square of the local Mach num- 
ber as one of the variables to describe the flow. 

The transformed system of equations thus obtained is first 
examined with regard to the existence of a solution.  It is shown 
that, in general, a solution exists whose calculation requires know- 
ledge only of'the variation with position of any three of the 
dependent variables of the system. The direction of change of the 
flow variables can be obtained directly from the transformed equa- 
tions without integration. As examples of this application of the 
equations, the direction of change of the flow variables is deter- 
mined for two special flows. 

In the particular case when the local Mach number M = 1, a 
special condition must be satisfied by the flow if a solution is to 
exist. This condition restricts the joint rate of variation of 
heating, friction, and area at M —  1. Further analysis indicates 
that when a solution exists at this point it is not necessarily 
unique. 

Finally it is shown that the physical phenomenon of choking, 
which is known to occur in certain simple flow situations, is 
related to restrictions imposed on the variables by the fornTof the 
transformed equations. The phenomenon of choking is thus given a 
more general significance in that the transformed equations apply 
to a more general type of flow than has hitherto been treated. 
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INTRODUCTION 

The rational experimental development of Jet- and rocket- 
propulsion power plants requires adequate knowledge of the theoreti- 
cal mechanics of diabatic (nonadiabatic), frictional, variable-area 
compressible fluid flow. The differential equations describing this 
typo of flow are well known.  (See, for example, references 1(a), 
1(b), 2, 3, and 4.) Their solution in the three-dimensional case, 
however, \B  so difficult that some simplification is necessary to 
permit development of the theory in a form immediately useful for 
technical applications. 

In the present paper, such simplification is effected by gen- 
eralizing the familiar "one-dimensional" or hydraulic treatment of 
fluid flow to include the simultaneous effects of heat addition, 
friction, and area change upon the flow of a compressible fluid 
rather than by attempting to show that the one -dimensional .approx- 
imation follows from a simplification of the hydrodynamüc and heat- 
flow equations in their general three-dimensional form. The Gen- 
eralization leads to one-dimensional equations in differential form, 
which are identical with equations previously used by other inves- 
tigators in less general cases. 

Generalized conservation equations have been derived in appen- 
dix A in order that a complete and logical basis for the theory may 
be accessible to the reader. The resulting theory is intended to 
serve as a foundation in differential form for calculatxon of all 
types of mathematically continuous (that is, shocklcss) flow of per- 
fect gases to which the one-dimensional approximation is applicable. 
Thus the theory applies directly to compressible flow in combustion 
chambers and also, with but slight modification, to flow in turbines 
and compressors (cf. reference 5) and nozzles and diffusers whenever 
the one-dimensional approximation is valid. 

In order to obtain convenient and unified equations, the gen- 
eralized relations are transformed by introducing a new basic 
variable, the square of the local ilach number M* S. if. pressure 
and temperature are chosen as the additional basic variables; other 
relevant flow variables (for example, density, velocity, mass flow) 
may be expressed in terms of Mach number squared, pressure, and tem- 
perature. Values of M from zero to infinity are considered; the 
treatment is therefore applicable to-both subsonic and supersonic 
flow. 
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The variable M has been used throughout differential treat- 
ments by G-ukhman (reference 6), Bailey (reference 7); and Nielsen 
(reference 8), who investigated various examples of frictional, 
diabatic compressible flow. A related variable 
Z = (y-l)R2f{2.  + (7-l)M2], vhich can be used alternatively with M, 
will be discussed briefly in appendix B. Pertinent papers in. which 
M is not used extensively are references 9 and 10, which report studies 
of isothermal and of adiabatic frictional flow, respectively. A 
treatment of frictionless diabatic compressible flow carried out by 
Szczenioweki (reference-ll) is partly in differential form. The 
same subject, using the M language without differential formula- 
tion, is discussed in reference 12. The variable M has also been 
employed to advantage in reference 5 for analysis of compressible 
flow through turbines and compressors, a related field that is not 
specifically discussed in the present paper. 

In the general case, the differential equations obtained in the 
present treatment do not permit of formal integration: but being of   ^ 
the first order, they are particularly amenable to numerical methods. 
A solution of the system is shown to exist, except possibly at sonic 
velocity, and the behavior of the solution in this neighborhood is 
investigated. From the differential equations useful information 
may be easily obtained about direction of changes in the flow vari- 
ables. Choking is shown to be a consequence of a certain property 
of the equations. .   *. 

THE ONE-DIMENSIONAL AFPE0XIMATI0N 

Basic Equations 

The "one-dimensional" steady-flow theory utilizes a model con- 
sisting of a perfect gas contained within a duct, across any section 
of which the flow variables are constant. Only the component of 
velocity normal to the section is considered; body forces are neg- 
lected, and heat, whether supplied by combustion, conversion of 
frictional work, or conduction from the walls, is assumed to be 
transferred Instantaneously and completely bi\t only transversely 
throughout the cross section, which may be of variable area. Each 
flow variable can thus be considered as a function of a single 
parameter, say the distance along the axis of the tube, whence the 
term "one dimensional." 
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The conventional variables — pressure, temperature, density, 
and velocity in one-dimensional flow — are connected by four rola- 
tions derivable from the first law of thermodynamics, the conserva- 
tion of mass, the second law of motion, and the thermal equation of 
state for a perfect gas. 

The four relations are: 

Conservation of energy Cp dT + VdV = dQ (1) 

Conservation of mass d(pVA) = 0 (2) 

Equation of motion -dp =* pYdV + pdP (3) 

Equation of state d(p/RpT) =0 (4) 

The specific heat at constant pressure Cp and the gas constant E 
do not vary in the flow. The sy&ibols p, Y, p, and T, respec- 
tively, stand for density, velocity, absolute static pressure, and 
absolute static temperature. The pipe area, which may be variable, 
is represented by A. Heat added per unit mass is indicated by Q, 
and work per unit mass done against friction by E. Consistent 
units are used throughout. In equations (1) through (4) each vari- 
able* is to be considered as a function of a single parameter, such 
as the distance x along the tube considered positive in the direc-   
tion of flowj and, of course, the meaning of each differential du 
is then given hy 

du = u'(x)dx 

Equations (1) to (3) are customarily used without explicit 
recoJJgnitlon of their true meaning with regard to the one-dimensional 
approximation. The interpretation of the quantity dF in particular 
is often obscure.  In order to provide a logical, unified basis for 
the theory, equations (l) to (3) are derived in app&ndix A; spocial 
care is taken to keep the derivations within the framework of the 
one-dimensional approximation. . T 

Applicability 

The validity of the one-dimensional approximation depends upon 
the assumption of the uniformity of flow conditions across a plane 
normal to the direction of flow. Experience has shown that this 
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assumption constitutes an adequate approximation in many special 
cases; in particular, with subsonic turbulent flow in long pipes 
without separation, the .reasonably flat velocity profile permits 
the use of equations derived on this basis. In cases involving 
incomplete growth of boundary layer or where separation of flow occurs, 
however, there is grave doubt as to the applicability of a one- 
dimensional treatment. Although boundary-layer effects are somewhat 
amenable to calculation, the occurrence of separation is difficult 
or impossible to predict and the question of applicability must usually 
be determined by experiment or estimated by experience. 

The one-dimensional approximation would not be valid if oblique 
shocks occur in the flow. Nor can normal shocks, if treated as flow 
discontinuities, be handled in the differential form of the present 
approximation. If, however, in equations (l) and (3), dQ and dF 
are considered to depend upon the derivatives of T and T and if 
heat and momentum transfer in the direction of flow is allowed, then 
the equations for continuous normal shock (reference 1(c), p. 219) 
can be put in the form of equations (1) to (4). 

In the development and use of equations (1) to (4) verious 
approximations are made, such as neglecting the squares of velocity 
components normal to the direction of flow, replacing the square of 
the cosine of the half-angle by unity, and assuming the constancy 
of R and Cp. In this paper no attempt is made to state under 
what circumstances such approximations are suitable. 

TRANSFORMATION OF EQUATIONS 

Change of Variables 

A canonical form for equations (1) to (4) is obtained by taking 
logarithmic derivatives and choosing as a variable the square of the 
local Mach number 

M2= N = V2/7RT (5) 

where y     is the ratio of specific heats. This choice to obtain 
simplification of the equations is not unique; similar advantages 
result with other dimensionless combinations of velocity squared and 
a temperature. For instance, some workers have used the ratio of 
dynamic temperature to total •cemperature; in appendix B of the 
present report are presented the canonical differential equations 
in terms of this variable. 
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If equations (1), (2), (3), and (4) are divided by cpT, pVA, 
p, and P/RPT, respectively, there result— 

V2 dV  dT  dQ (7_D 
7RT V T cpT 

dY dp dA 

T + — 
P 

rs " T 

V2 

7 yM 

dV dp 
+ — 

P 
= 

pdF 

"p~ 

dp 
—. + 
p 

dT  dp 

"T*  p 
- 0 

(6) 

(7) 

(8) 

(9) 

With use of equation (5) and the expression for dV/V obtained by 
logarithmic differentiation of equation (5), 

dV 

V   2 V N   T / 

and, upon elimination of dp/p, there are found 

1/dN  dT\ 

" 2V¥" + "~ - 
(10) 

(7-l)N dN 

N 
1 +- 

(7-l)N dT  dQ 

CpT 
= de (ii) 

1 dN  dp  1 dT   dA__ 

2 N  TT ~ 2 ¥~" ~ T~ 
(12) 

7N dN  dp yS  dT  dJ 

2 N ET 
= du (13) 

where the dimensionlese quantities d9, da, and du have been 
introduced to simplify the following analysis. 
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Solution for Logarithmic Differentials 

If the determinant formed by the coefficients of &N/N, dp/p, 
and dT/T in equations (11), (12), and (13) is not identically zero, 
the equations may he solved uniquely for these, three differentials. 
As the determinant in question is proportional to (l-N), -which vanishes 
only for N = 1, the solution is obtained as follows: 

dN/N = (l-N)" f(l  + 7N) d9 + j*2 + (y  -1)N] du + f_2 +(7-1)N] da J (14) 

dp/p =  (l-N)"     "^- 7N de -  [l +(/-1)N]-   du  - 7N da | (15) 

dT/T = (l-N)"1 |   (I-7N) d0 -  (7-l)N du -  (7-l)N    da  } (16) 

It is also convenient to record the differential expressions for 
the density p and velocity Y: 

dp/p = dp/p - dT/T = (l-N)"1 (-de - du - N da) (17) 

dV/V = (dN/N + dT/T)/2 = (l-N)"  (de + du + da) (18) 

Application of Second Law of Thermodynamics 

The first law of thermodynamics was used in the formulation of 
the basic equations; the second law of thermodynamics may be 
employed to furnish additional information. The entropy differ- 
ential dS for a perfect gas is given (cf. reference 13,* p. 63) by 

dS/cp = dT/T - [(7-1) H\    dp/p = de + [(7-l)/7j du       (19) 

The second law of thermodynamics then states . . 

0^ dS/cp - dQ/cpT = [(7-1) /7] du (20) 

The relation, according to equation (19), that 

dS/c = (de + du + da) - du/7 -da 

when used with equation (20), results in the inequalities 

de= dS/c = dß - du/7 - da = dß -da (21) 

where dß = - de + du + da. 
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DISCUSSION OF EQUATIONS 

Remarks on Integration of Equations 

Equations (14), (15), and (16) can be rewritten as 

N 1+7N      N 2+(7-l)N      N 2+(7-l)N       _  . 
N' = '—  Qi + Li i_.pi - Li i- A'    (22) 

1-N c1DT      1-N   ET       1-N   A 

P* = ___. 2_L Q,_ ___. l+(7-QN -.,  _P_ 2f A« (23) 
1-N c T    1-N   ET        1-N A 

P 
T I-7N      T (7-l)N     T (7-l)N 

—s- Q' - T--S  T^T, • F4- -r-g • ; — A' T' = — 0' — — F'+  -—-—i-— A'        (24) 1   T^N cpT *   1-N  ET  r - 1-N  A ^  ; 

where the primes indicate differentiation with respect to x. This 
system clearly satisfies, except at N = 1, the conditions of the 
fundamental existence theorem (see, for example, reference 14) when 
Q, F, and A are differentiable. Hence a solution exists except 
at sonic velocity and may "be obtained formally when possible, and 
by standard numerical methods otherwise, as soon as the functions 
Q, F, and A (or their derlvatires) are specified. More gener- 
ally, the system may bo solved in similar fashion for any throe of 
the variables N, p, T, Q, F, and A as functions of xt    when 
the variation with x of the other three is prescribed. Also it 
may be noted that as all the foregoing variables are functions of 
one parameter, any two may be considered as functions of each other 
under suitable circumstances. 

Direction of Change of Flow Variables 

In practical as well as in theoretical work it is frequently 
useful to be able to determine the direction of change of flow 
quantities with respect to heat addition, friction, or area varia- 
tion without troubling to get quantitative information from inte- 
grated forme. Equations (14) to (18) (or (22) to (24)) permit the 
specification of signs of derivatives _at any particular point and 
also throughout certain regions of flow. Thus equation (14) shows 
that in subsonic flow the effect of positive 01, \i', or a', 
is to increase N, whereas for supersonic flow the effect is to 
decrease N. When the derivatives have different signs, the net 
effect will depend upon the algebraic sum of the separate con- 
tributions. 



NACA TUT No. X336 9 

As an example of the use of this technique, suppose heat is 
added to a fluid in a constant-area pipe, with negligible friction; 
that is, 01 ^ 0,  u' =« a' = 0. It is easily seen from equa- 
tions (14) to (18) that for the entire range of W from zero 
to infinity 

(1-Hf) dN/dQ ^ 0 (25) 

dp/dtt = 0 (26) 

(1-7N)"1 dT/dN = 0 (27) 

dp/dN ~ 0 (28) 

dV/dN = 0 . " -.(29) 

These results are given in reference 12. By use of the chain rule 
for the derivative of a function of a function, the sign of the 
derivative of any of the flow variables with respect to any of the 
others may "be obtained; thus, from equations (25) and (29) it is 
clear that 

dV       dV dW > , 
(1"H> dQ - (1-H) dH 3Q - ° (30) 

As another example, consider the flow in circular cylindrical 
pipes with heat addition and with friction; that is, 0' 3? 0, 
li' =i.      0, a' =  0.  (See also related discussion in reference 8.) 
Equation (14) will be used to determine the direction of change of 
N with respect to x. If the heat addition is only through the 
wall,, which is at temperature Tw, the heat added per unit mass of 
fluid in passing a distance dx along the tube is given by 

pVA dQ = h (Tw-T) («D dx) (31) 

where D is the tube diameter, and h the local surface-to-fluid 
coefficient of heat transfer, in heat units transferred per unit 
temperature difference, per unit area.  (Cf. equation (2), refer- 
ence 15, p. 135.) In conjunction with equation (11), equation (31) 
leads to 

d0 _ _*g _ h [(Tv/T)- l]  jtD dx _4h C(Tg/T) - l] dx 

CpT      cp pVitD
2/4 c pVD 
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The expression for frictional work done Is assumed to be give*1 (cf. 
reference 15, p. 119, equation (8)} by 

dF = 
fV2 dx 

2(D/4) 
(33) 

where f Is the Panning friction factor. From equations (13) and 
(33) it follows that 

dF  2f?N dx /.IAS 

If Reynolds' analogy is valid, h may be replaced by c« pYf/2 
(reference 15, p. 162, equation (1)), whence equation (if) becomes 

dN/dx = [N/(1-N)] '  (I+7N) [(Tv/T) - l] + [2+ (7-l)N.I 7N \_2ffa      (35) 

This equation may be used to determine the direction of change of 
N with x, and hence of other flow quantities, for various 
ranges of N and of Tw/T. For values of (TW/T) «1 (maximum rate 
of cooling), dN/dx is positive for values of 

1 > N > j-7 +J~y{5y"^T) 1 /Z7(7-l) =0.58 

for 7 = 1.4; that is, the effecte of friction in increasing tho 
Mach number overbalance the effects of the cold-walls in lowering 
it if 1 >M = vN> 0.76 for 7 = 1.4. If N> 1 then (dN/dx) < 0, 
and acceleration of frictional, supersonic flow by connective 
cooling appears to be impossible. Acceleration of frictionless 
supersonic flow by cooling should, however, be possible (refer- 
ence 12). 

Behavior of Solution at Sonic Velocity 

The differential equations (14) to (18) must be examined 
as to behavior at the singular point N = 1. In order that the 
logarithmic differentials may be defined at this point, it is neces- 
sary that dß = de + du + da vanish suitably at N =  1; that is, 

dß =.d6 + du+dcx = 0    at N = 1     (36) 

because each logarithmic differential is proportional to dß/(l-N) 
there. If dß ¥  0 upstream of the end of the duct, N can equal 
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1 only at the end of the duct. This situation ie illustrated "by 
the "choked" converging nozzle and by the frictional diahatic flow, 
which is treated in the previous section. Equation (36) is formally 
satisfied at the end of a duct where de, du, and da may be 
considered to vanish for all values of 3U. 

Between the ends of a duct, however, dß must always vanish 
where N = 1. This condition shows that at N = 1 arbitrary varia- 
tions of dö, d|jL, and da are not possible. A specific illustra- 
tion is the ideal nozzle in which d© = &\i  = 0; according to equa- 
tion (36),  da is then restricted to the value 0, which means 
that the area has a stationary value at N = 1. This is the well- 
known result that sonic velocity can be attained only in the throat 
of an ideal nozzle in shockless flow. A quite similar treatment 
applies for the cases where d6 and du are the quantities to be 
investigated.  (See pertinent material in references 5 to 12.) 
Condition (36), which was. necessitated "by the presence of the deter- 
minant (l-lT)/2 in equations (14) to (18) is thus seen to 
provide a unification of the treatment of the flow behavior in the 
neighborhood of sonic velocity. 

Combination of the second law of thermodynamics with equa- 
tion (36) also yields limitations on the behavior of the flow at 
N = 1. According to equations (21) and (36), at sonic velocity 

de ^ dS/cp ^ - da = dA/A (37) 

These results may be stated in words to the effect that in converg- 
ing or constant-area channels at N = 1, neither the heat term 
do = dQ/cpT nor the entropy term ds/cp can be positive. In 
jdiverging channels these two terms may be either positive or neg- 
tative.  If either de or du. is everywhere 0, relation (21) 
yields more detailed results. For example, if de 3F 0, then at 
N = 1, by equations (36) and (20) 

djj. = -da 

= [7/(7-1)] as/cp £ 0   (de = 0, N = 1) 

Continuous flow with friction and without heat addition at sonic 
velocity cannot therefore occur in a converging channel (refer- 
ence 7). 
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A more complete treatment of the behavior of the flow when 
N = 1. "between the ends of the duct is obtained by considering 
second-order terms. As N approaches unity, equation (14), which 
may be written 

N'/N = 4(1+7N)0' + Of(7-l)N] u' + [2+(7-l)N] a' |/(l-N) 

(where the prime indicates differentiation with respect to x.), 
takes the form o/O. For the evaluation of this limit, L'Hopital's 
rule gives after some calculation 

V = [e0'N0' + (1+7) ßo"3 /(-No') 

where subscript o denotes value of function at N = 1. The eolu- 
is 

N0' = -0o'/2 ±/<0o'/2)
2 - (l+7)ß0" (38) 

tion for N0' is 

The double-valuedness of the derivative at N = 1 wilL have impor- 
tant consequences in that a unique solution of the equations may 
not be obtained when N = 1 along the flow path.  In general, it 
will be possible to continue the solution from N = 1 along either 
of two paths, depending on the choice of sign. In certain 'cases, 
depending on the signs of $0'    and ß0", one sign will correspond 
to continuation into subsonic flow, the other into supersonic; 
otherwise the two choices will correspond to different continuations 
into flow of the same character. This result means that specifica- 
tion of initial conditions and of variation of de, du, and da 
alone is not suffioe*|I,nt to insure a unique solution if N becomes 
unity along the flow. In the event that the radicand is zero, it is 
possible that only one solution is obtained; or it may happen that 
some higher derivative is double-valued with resulting ambiguity of— 
solution. The analysis for this case is somewhat involved and will 
not be continued here. 

It is interesting to note that a less general problem of the 
same nature has been presented by Lorenz (reference 16) and Prandtl 
and Proell (reference 17). Some of this work is possibly more 
accessible in reference 18. 

The Phenomenon of Choking 

The general equations (ll), (12), and (13) impose restrictions 
on the relations between the flow variables and the heat, friction, 
and area variation.  When these restrictions take the form of upper 



NACA TN No. 1336 13 

or lower limits on mass flow, the associated phenomena are termed 
"choking" processes. As an example, it is well known that the ideal 
nozzle has for given subsonic entry conditions a maximum mass flow 
beyond which the discharge cannot be increased no matter how much 
the exit pressure is lowered. Another case is "thermal choking," 
wherein the entrance Mach number and hence mass flow in diabetic, 
frictionless, constant-area flow is limited for given heat addition 
despite indefinite reductions in outlet pressure (reference 12). 

The nature of choking may be studied with the help of equa- 
tion (22), which was derived simply from the basic equations.  It 
will be shown that unless heat, friction, and area variation are 
such that (l-N) times the right-hand side of equation (22) 
changes from positive to negative as x increases, the Mach number 
in the tube cannot become greater than 1 if the entrance velocity 
is subsonic and cannot become less than 1 if the entrance velocity 
is supersonic, provided that the flow variables remain continuous. 

For convenience, designate by Y the factor (l-N) times the 
right-hand side of equation (22). The quantity Y is seen to con- 
sist of a sum of terms in Q', F', and -A' multiplied by func- 
tions of N that are always positive.  (in the event that only one 
of the terms Q', F', and -A'  is not 0, Y becomes merely the 
derivative of the heat added, the frictional work, or the area, 
multiplied by a simple function of the flow variables; then posi- 
tive Y corresponds to the case of heat addition, friction, or a 
converging duct.) 

Suppose first that Y is always negative. Then if the flow 
at the entrance section x-^ is subsonic, dN/dx = (l-N)Y<0, and 
the Mach number decreases; if the entering flow is supersonic, 
dN/dx = (l-N)Y >0, and the Mach number increases. 

Suppose now that Y is always positive. Then, if the entering 
flow at X]_ is subsonic, dN/dx = (l-N)Y>0, and the Mach number 
increases. But N cannot increase past unity as x increases. 
For suppose N = 1 at x = x0 and is greater than 1 in the right- 
hand neighborhood of x0 (exclusive of XQ); then dN/dx is nega- 
tive in this neighborhood, because  (l-N)  is less than 0 and Y is 
greater than 0. Now N is equal to unity at x = XQ,  is contin- 
uous, and has a negative derivative in the neighborhood mentioned. 
Hence N is less than 1 in this neighborhood, which contradicts 
the assumption. Therefore N cannot be greater than 1 if Y is 
always positive, N is continuous, and N(x^) is less than 1. In 
general, no continuous solution exists for values of x > x0 if Y 
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ia always positive. This statement, and tho foregoing proof, are 
valid even if N'(x0) does not exist. An analogous development 
may bo made for H(x^) greater than 1 with the conclusion that, 
with Y positive and N continuous, N cannot bo less than 1. 

If Y changes from positive to negative at x = XQ, however, 
the value of N may cross unity at that point, but if Y is ini- 
tially negative, N goes away from unity as previously shown and 
can only turn toward unity if Y changes from negative to positive; 
this change must be made at some value of N other than 1. After 
Y has changed to positive, the situation reduces to the case that 
Y is always positive, with tho N where Y changes sign now taken 
as the entrance N. 

It has been shown that up to same fixed point in tho tube, 
which can bo either the exit or the point at which Y changes from 
positive to negative, N and therefore the Mach number do not 
become greater than 1 if tho entering velocity is subsonic nor Ices 
than 1 if tho entering velocity ia supersonic. Furthermore, if Y 
is positive up to the point at which N is limited, the derivative 
of N before this point is always positive if tho entoring flow is 
subsonic and is always negative if the entering flow is supersonic. 
Thus, for positive Y and subsonic entrance velocity the ontranco 
N cannot exceed some limiting value less than 1 determined by the 
particular Q, F,  -A variation, for N is alwajs increasing 
from its initial jsaluo and cannot exceod 1; and, by analogous con- 
siderations for positive Y and supersonic entrance velocity, N 
cannot be less than some limiting value greater than 1. This 
limitation is essentially tho choking phenomenon. 

The spocific form this limitation takes is not easily stated 
in the general case, bocause the choice of which factors are to.be 
held constant and of which variablos are to be considered limited 
determines the particular form of the restrictions. Numerical 
results for some-particular cases are given in reference 12, amon£ 
others, to illustrate' the nature of possible results.  It is felt 
that additional special cases should be investigated before a thorough 
study of the general case is attempted. 

Flight Propulsion Research Laboratory, . 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, February 24, 194?. 
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APPENDIX A 

DERIVATIONS OP TB3EE BASIC EQUATIONS 

Conservation of Energy 

The first lav of thermodynamics applies to energy changes 
between two states of a system enclosed within a surface» Let the 
system (fig. 1) he the gas of mass Am that is contained in the 

x = 0 

Figure 1 

initial state within the tube walls and the sections at x^_ and 
i, and in the final state within the tube walls and the sections 
at £j_    and £2; xl* z2> ani £l ^re arbitrary, ana |2 is 
determined by the condition that the mass between x^ and £ -^ 
equal the mass between x2 and f; 2. When m(x)  is defined as the 

total mass of gas contained within the duct between the sections 
x = 0 and x = x, the definition of Am becomes 

Am=m(x2) - m(x1) =JH(I2) - m^) (33) 

Let U(x)  denote the internal (thermal) energy per unit mass 
of fluid, p(x)  the static pressure, V(x) the gas velocity, 
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A(x) the cross-sectional area of the. duct, each.-taken at the .sec- 
tion, xj and Q(x) the heat (In mechanical-energy unite) added 
from walls or by combustion^- to a unit mass of the fluid during its 
passage from x = 0 to x = x. Then the first law of thermodynamics 
says for steady flow that 

(U +i V2)dm -       ('U-+i V2) 
m(tx) ^   2   >    JmCxL) V   2  ' 

dm = 

'm(il) 
Q dm pA dx 

*2 

Q dm 

(40) 

As A dx = (l/p) dm, where p(x) is the density of the gas, equa- 
tion (40) becomes 

rm^2> /i ?       \    fmUi> /   i ? (u + I V2 - Q + p/p) dm = (u +i V2 

Jm(x2)    V        2 y Jm(xx)    V        2 

when the limits of integration are changed. 

Q +• v/p)  dm 

(41) 

Provided that the integrand is continuous (which requirement 
excludes shock), the expression on the right-hand side of equa- 
tion (41) may be written, by the theorem of the mean for integrals: 

[mÜi) - m(xL)] f(mi*) 

where f (raj*)    indicates the value of the integrand at some m = m-L*, 

m(x1)<mi*<m(li). The integral on the left-hand side yields a 

similar result, with subscript 1 replaced by subscript 2, whence, 
by virtue of equation (39) 

f(m1*) = f(m2*); m(xx) < ntj* < m^), m(x2) < m2* <. m(g2)   (42) 

-Actually the heat liberated by combustion might be oonsiderod as 
part of internal energy; or the external surroundings might be 
considered to include the fuel; or the first law might be genera- 
lized to include heat sources. The treatment given here is con- 
venient but must be understood to require some justification on 
one of the bases mentioned. ..  -. 
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As £•]_—>x-j_, \ 2—>x2>    "t^i6 equation becomes 

f^x-^] = ffiCxg)] (43) 

but x^ and Zg are arbitrary. HenCe f is a constant, and 

^(u + l^-Q + p/S) =0 

or, since d(U + p/p) = dH, where H is the enthalpy per unit 
mass 

dQ = dH + VdV (44) 

For a perfect gas,    dH = o 331,    -whence the energy equation is finally 

dQ = c dT + VdV (45) 

Conservation of Mass 

The conservation of mass, in the form useful here, states that 
in steady flow the mass entering a closed surface during any time 
interval At is equal to the mass leaving during the interval At. 
Let the closed surface consist of the sections at arbitrary \ -j_ and 
Xg (fig« 1) a;nd the portions of the duct_between these sections and 
let At be the time required for the mass m( £,) - m(x,) to enter 

the surface while mass ^(lo) ~ m(x%)    flows out. The value of x-^ 

is arbitrary, whereas £ 2 is fixed by the conditions on the time 

interval. Upon definition of t(x) as the time required for a 
fluid particle to travel from origin a: = 0 to x = x,    At may be 
defined by 

AtSt(t:) - t(xx) = t(|2) - t(Xg) (46) 

The law of conservation of mass sayB that 

^1        fh 
(47) 

Upon change of variable, this equation becomes 
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-t(ea> 
pA g dt _ /   2 pA g dt (48) 

as before, "by the theorem, of the mean for integrals and. condi- 
tion (46) the integrand must be constant, whence 

d(pVA) = 0 (49) 

Equation- of Motion 

The vector form of the second lav of motion for continuous 
media states that the integral of the density of surface forces 
oyer a closed surface is equal to the integral of the density times 
the particle derivative of the velocity over the volume enclosed by 
the surface,  (See, for example, reference IS.) For the mass of 
gas contained within the sections at x-^ an^- ^2  (f^-6* ^) an(^ "kke 
walls of the duct, the horizontal component of the equation of 
motion becomes 

p(x1) A(3C1) - p(xg) A(xg) + P2 R dx =| 2 p^Adx     (50) 

J*l       Jxl 

where E(x) dx is the force exerted on the gas by the portion of 
the duct between x and x + dx. For steady flow, the integral on 
the right-hand side may be transformed as follows: 

2 p § A dx . P p gf| A dx . pVA f  f dx - PVA [Yt*.,)-^)] 
>1 >1 (51) 

It follows from equations (50) and (51) that the equation of motion 
may be written in differential form as 

pdA + Adp + pVAdV = Rdx (52) 

Wow Rdx may be resolved into two constituent parts, the 
horizontal components of the tangential friction drag and of the 
normal pressure reaction. If the half-angle of the duct is denoted 
by 0(x), the wall surface by a(x), and the tangential frictional 
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drag per unit area "by T (x), from figure 2 it is clear that 

Figure 2 

and that 

hence 

E dx =5 -(T da) cos 0 + (p da) sin 0 

da = dA/sin 0 

R dx = -(T &O)  COS 0 + p dA (53) 

It is possible to use equation (53) directly without further 
analysis if the friction factor is related to T  by the equation 

T = fpV^/2. In many engineering treatments, however, f is defined 
in terms of the "energy loss due to friction." In order to mate 
this concept of energy loss more precise and to make possible 
derivation of a rigorous connection between T and energy loss 
define F(x) as the work done by unit mass of the fluid against 
friction in moving from the origin to position x. The work done 
in moving the entire mass of fluid between Xi 
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and £1 to the region between x2 and_._$2 (fig- 3) vill "be com- 
puted in terms of the original variables "T and a     and in terns 

Figure 3 

of the new variables 3f and m. If the two quantities are equated 
and suitably transformed, a relation will be obtained between dF 
and TdO. 

Let x^, 12_>    anä Xg    te chosen arbitrarily, and let \~    be 
determined by the condition that the total mass Am between 

e2. Let 
xl 
be an an(3- 11 equal the total mass between Xg and 

arbitrary point between x-|_ an^ £ l* Et"£ -*-et xb ^6 äeternined 
by the condition that m(xa) - m(xj_) = m^x^) - m(x2)» In particular, 
if. *a = 

Ll> then = x. 2' if -e i> then e Thus it 

is säen that, as x  rune from x-^ to ^^ ^h r^lB  from Xg to 

In order to determine the work done in te:ms of the variables 
T and a, the procedure is to move thin sections from their original 
positions, given in each case by xa, to their final positions x^, 
to find the work done by each of them, and then to add up the work 
done for all the sections. 
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First}  divide the mass Am between x±    and £-j_ Into smaller 

elements of mass A^m, A2m, . . . Anm.  (See fig. 3.) Let A±a 

be the wall surface corresponding to the element of mass A^m and 
let the duct wall "between the initial and the final position of 
Ajia he divided into elements of length A^s. For a given Aim it 
follows from figure 3 that 

A±n = p± A± A±x 

A.<y = 2nr. A.s i     i i 

Aji = cos fij_  A^s 

so that 

•A±a = g± A±m 

where g±s. Zitr^/ß. A^_  cos 0^.    Each of the quantities p^_,    r^}    fi^} 

and g^ is to he evaluated at the proper point within AjX. 

Finally from figure 3 there exists on A^m a force AS^CsO, 
to he overcome by the work against friction, equal to 

T(SJ) A^J(S^) =T(SJ) gi(Sj) A±m 

where it is convenient to consider T and o as functions of s, 
inasmuch as frictional drag and the extension of an element of fixed 
mass depends on the position of the element in the tubes. 

For any element of mass A^m then, an approximation (the 
accuracy of which depends on the size of A^m) to the work done 
by A^m in going from section xa to section x-^ is 

s(xb) 

11m V                                              lim      k 

k-»w y A^±(s,) AjS =      k—9» ^>       T(S  )  SiCSj)  A±m AjB 

A^s-^-O 4—\                                       A,s-3K)  j3? 3 s(x  )                                         «3 a 

= A^m T(S) g^(s) ds 

Js [ts>] 
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It follows that the corresponding, approximation to the vork done 
by the entire mass Am is 

Bl  '   * 
n 

1=1 

T(B) gi(s) ds 

-/s[m(xai)] 

Wim 

and, as- the approximation "becomes more and more accurate as the 
largest Aim becomes smaller and smaller, the expression for the 
work, done against friction when the entire mass between x^ and £-j_ 

is transported to the position between x2 and £2 becomes 

s[mK3 
T(B) B±(B)  ds 

[m(^i3 

mill)    f^(^)l 
)f Aim = I      J T(S) g(s) ds dm 

m(xi) ^s[m(xa}] 

The limit--of the double sum may be: written as an iterated Integral 
as follows: 

*(!]_) / s[m(xb)] 

fmUi)  Js[m(xa)] 
Tg ds dm (54) 

It is clear that the work done against friction when the entire 
mass is moved as previously described is equal also to 

lim 

A^m—->0 

AjF—SO ?? A jF A jia = 
m«!) p[m(xb)] 

'm(xi) ^F[m(xa}] /m(Xl) ^F[m(xa)] 

(55) 

'dF 
de 

whence it follows, since the intervals for both integrations are 
arbitrary, that 

dF 
ds 

Tg . (56) 
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and 

a* - J     2*r \ IM ,_,   / 2«r  \ / da\ 
^=rlpAaos gi/l^rj 

then 

(Tda) COB # = cos2 4  PA dF (57) 

Because, fpr the small angles usually under consideration, cos2 0 

is very nearly unity (for a half angle of 6°, cos2 $ =  0,989), the 
retention of this factor except for particularly precise work would 
not seem justifiable. Hence equation (53) may he written 

E dx = -pA dF + p.dA (58) 

The differential equation of motion is finally 

-dp = pVdY + pdF .  . (59) 

The connection between dF and the differential loss in 
stagnation pressure (-dp^)  can, with the help of equations (14) 

and (15), be expressed in the form 

"dPt  dF     yNde 

Pt   ET  [2 + (7-l)lfl 
(BO) 

Thus except for the limiting case of incompressible flew^  (-dp^) 

and dF cannot be used interchangeably in defining the friction 
factor even for the adiabatic case where de = Q. 
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APPENDIX B 

THE Z LANGUAGE 

In the place of N = v /7RT the equations may be formulated 
in terms of Z, defined through 

Z = (V2/2cp)/(T +^/2c ) • («D 

The numerator is the so-called dynamic temperature, the denominator 
is the total temperature. Z and N are related "by 

Z = [(r-l)N]/[2f(7-l)N] 

N = 2Z/(7-l) (1-Z) 

(62) 

(63) 

This replacement represents a one-to-one transformation of N into 
Z in the range 0 to infinity for N, 0 to 1 for Z. 

In order to illustrate the form that some of the earlier equa- 
tions take under this transformation, equations (14), (15), and (16) 
are written in terms of Z, 

dZ 

"z~ 
Tl-Z 

i-/Z£r\zl 2 
1 + i~:Uz de + (l-Z) du + (1-Z) dat    (64) 

j 

dp 

T -rv 
,   y 
/- — zde- 
\   7-1 

i+z 
d)j. 

7-1 
Z dal 

^—l)Z 

(65) 

dT 

T 
/7+A 

/1-Z  yZ\ 

}  2  7-I' 
d© - Z du - Z da (66) 
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